国产亚洲精品综合在线网址,欧美成人一区二区三区不卡视频,国产成人综合洲欧美在线,精品久久久亚洲男人av

Cyclotron
Self-developmentCompactSmall Sizelight Weight
Offer different type of cyclotrons as customers required.
240 MeV Superconducting Cyclotron
Introduction

Medical superconducting cyclotron mainly consists of ion source, magnet system, radio frequency system, extraction system, beam diagnostic system and auxiliary systems. The cyclotron employs superconducting technology, with a diameter of only 3 meters and weighing no more than 75 tons. It can produce ~240 MeV beam energy with over hundreds of nano-ampere beam intensity, ensuring highly efficient dose delivery. The cyclotron, based on the physical properties of the “Bragg peak” of the proton, enables static spot scanning, achieving precise radiotherapy.

Parameters
TypeSuperconducting Isochronous Cyclotron
Diameter3 m
ParticleProton (H+)
Weight75 t
Beam Energy240 MeV
Beam Current Intensity>500 nA
Advantages
  • Efficient dose delivery reduces treatment time.
  • Realizing spot therapy modes with treatment times in hundreds of microseconds.
  • Compact structure reduces building footprint.
  • Multiple safety measures in place.
14 MeV Cyclotron for Medical lsotope Production
Introduction

The High Intensity Medical Isotope Preparation Cyclotron is used for the production of radioactive isotopes, mainly comprises an ion source, magnets, radio frequency systems, targets, and beam monitoring systems.

The cyclotron extracts energy within the range of 8-16MeV, with beam intensity of hundreds micro-amperes. It can produce radioactive isotopes such as 18F,11C,15O,13etc. The cyclotron could evolve into a “drug delivery center”, catering to hospitals and research institutions' demands for radioactive isotopes.

Parameters
ParticleProton
Yoke Height0.92 m
Beam Energy8-16 MeV
Weight16 t
Beam Intensity>100 μA
Extraction Channel2
Diameter1.83 m
RF Power25 kW
Target System

The proton beam strikes various substances within the target after being extracted from the cyclotron, triggering nuclear reactions that yield positron-emitting isotope such as 18F、11C、15O、13N, with a production rate of 4.5 Ci/h.

Advantages
  • Compact
  • Small in Size
  • Light weight
  • Low operation costs
The Radiopharmaceuticals Preparation System
HFClM developed the radiopharmaceutical preparation laboratory based on a 14 MeV medical cyclotron.
30 MeV Multiparticle Cyclotron
Introduction

The 30 MeV Multiparticle Cyclotron is a multi-particle variable energy cyclotron capable of providing both proton and α particles. By accelerating H- ions and combining them with a stripping extraction method, it can produce proton beams with energies ranging from 18 to 30 MeV. This not only enables the production of isotopes such as 18F, 67Cu, 225Ac, and 124I but also meets a broader range of isotope production needs, including 68Ge, 111In, 201Tl, and 123I. Additionally, by accelerating α particles and using an electrostatic deflection extraction method, it can produce 30 MeV α particles, which are used for the production of the isotope 211At for α-targeted therapy. The cyclotron can meet the demands for conventional isotope production and the production of next-generation radioactive isotopes.

Parameters
ParticleH+/He2+Yoke Height1.35 m
Beam Energy18~30 MeV /30 MeVWeight46 t
Beam Intensity>100 μA / >10 μADiameter2.65 m
ExtractionStriping foil / ESDRF Power50 kW
Advantages
  • Lightweight and compact
  • Stable and reliable
  • Variable-energy extraction to meet the needs of a wider range of isotope production
  • Dual-channel extraction for efficient and flexible beam utilization
300 MeV High-Current MultiParticle Superconducting Cyclotron
Introduction

SC300 High-Current Multi-Particle Superconducting Cyclotron consists of 12 subsystems, including the ion source system, superconducting magnet system, RF acceleration system, and beam detection system. It has a diameter of 5 meters, a height of 3 meters, and weighs approximately 350 tons. The cyclotron adopts axial external injection technology, enabling rapid switching between different ions for efficient injection, providing a beam current far exceeding that of internal ion sources. Its four-helix fan and fine-tuning coil design can accelerate protons to 260 MeV and α-particles and carbon ions to 300 AMeV. It is applicable to multi-particle radiation therapy, offering more precise and effective treatment for tumors of various types and locations.

Parameters
Energy260 MeV300 AMeV300 AMeV
Particles AcceleratedH2+4He2+12C6+
Extracted ParticleProtonα12C6+
Injection SchemeAxial + 2-3 External Ion Sources
Diameter5 m
Height3 m
Weight350 t
Number of Sectors4
Number of Cavities4
ExtractionStripping Foil+4 MCs2 ESD +5MCs
Advantages
  • Combined particle low-scattering characteristics with high LET double-strand breakage capability
  • Advanced four-cavity design for improved acceleration efficiency
  • Dual extraction channels for efficient beam extraction
  • Multiple beam detection methods, enabling nA-level weak signal detection
240 MeV Superconducting Cyclotron 14 MeV Cyclotron for Medical lsotope Production 30 MeV Multiparticle Cyclotron 300 MeV High-Current MultiParticle Superconducting Cyclotron
主站蜘蛛池模板: 泰州市| 都昌县| 宁武县| 乐清市| 兰溪市| 阿克陶县| 清水县| 衡东县| 嘉善县| 峨边| 枝江市| 航空| 宜川县| 来宾市| 浦县| 平度市| 海兴县| 南木林县| 株洲市| 基隆市| 山丹县| 凌源市| 庆城县| 巴彦淖尔市| 开封市| 兴义市| 宣武区| 京山县| 施甸县| 靖宇县| 巢湖市| 邹平县| 红桥区| 闵行区| 山阴县| 渭南市| 远安县| 宣恩县| 射洪县| 盐津县| 乌鲁木齐县|